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Abstract—In order to develop a new asymmetric synthesis of enantiomerically pure 1-substituted tetrahydro-3-benzoazepines 3, the
synthesis of diastereomerically pure oxazolo[3]benzoazepinone 4 has been performed. The stereochemical information of the key
intermediate 4 originates from the chiral auxiliary (R)-phenylglycinol. The tricyclic ring system of 4 allows the stereoselective intro-
duction of a benzyl residue at the 6-position to obtain benzyl derivative 15 with a diastereoselectivity of 95.1:4.9. The relative con-
figuration of the main product 15 was determined by X-ray crystal structure analysis. Reductive degradation of diastereomerically
pure 15 led to enantiomerically pure (R)-1-benzyl-3-benzoazepine 17.
� 2005 Elsevier Ltd. All rights reserved.
NH

H3C

NH

CH3

NH

1

2
(–)-3

10
91

R

Figure 1.
1. Introduction

The NMDA receptor belongs to a group of excitatory
ionotropic glutamate receptors and is activated by N-
methyl-DD-aspartate. The NMDA receptor is involved
in a variety of complex physiological processes such as
learning and memory. However, overstimulation causes
acute and chronic neurodegenerative disorders including
excitotoxicity, epilepsy, Alzheimer�s or Parkinson�s dis-
ease.1 The tetracyclic MK-801 1 represents a non-com-
petitive NMDA receptor antagonist (Ki = 1.2 nM)
interacting with the PCP binding site within the cation
channel.2 Formal cleavage of the C9a/C10 bond of
MK-801 results in tetrahydroisoquinoline 2, also bind-
ing at the NMDA receptor. The enantiomers of 2 dis-
play considerable differences of their NMDA receptor
interaction: (S)-2: Ki = 35.4 nM, (R)-2: Ki = 3756 nM.3

1-Substituted 3-benzoazepines 3 are also potent NMDA
receptor antagonists. However, only racemic mixtures
have been investigated4 (see Fig. 1).

Since our interest has been focused on the NMDA
receptor affinity of 3-benzoazepine enantiomers, we in-
tended to develop an asymmetric synthesis of enantio-
merically pure 1-substituted 3-benzoazepines.
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Only a few methods for the synthesis of enantiomeri-
cally pure tetrahydro-3-benzoazepines have been re-
ported.5–8 Davies et al. elaborated a diastereoselective
intramolecular Friedel–Crafts alkylation of a chiral
Cr(CO)3-complex leading to enantiomerically pure
1-phenyltetrahydro-3-benzoazepines.5,6 The intramolecular
Friedel–Crafts acylation of N-(phenethyl)amino acids
provided 2-substituted tetrahydro-3-benzoazepines.7

Tietze et al. described an intramolecular Heck reaction,
which led to enantiomerically pure 3-benzoazepines.8

These methods belong to the class of chiral pool synthe-
sis. An asymmetric synthesis using a chiral auxiliary has
not been detailed. Furthermore, the already described
methods do not allow the systematic variation of the
3-benzoazepine substitution pattern. In order to investi-
gate the relationship between substituted 3-benzoaze-
pines and their NMDA receptor affinity, we were
interested in a method, which would allow a flexible
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substitution of the 3-benzoazepine scaffold. Therefore,
we planned a novel asymmetric synthesis of 1-substi-
tuted tetrahydro-3-benzoazepines 3. Tricyclic oxazolo[3]-
benzoazepinone 4 represents the key intermediate of the
projected synthesis. After deprotonation, diastereoselec-
tive alkylation should provide diastereomerically pure
products 5, which should yield after reductive cleavage
the enantiomerically pure 1-substituted 3-benzoazepines
3. The chiral information of 4 originates from (R)-phen-
ylglycinol (see Fig. 2).

An analogous oxazolo[3]benzoazepine has been synthes-
ised by condensation of 2-[4,5-dimethoxy-2-(2-oxopro-
pyl)phenyl]acetic acid with (S)-phenylglycinol. Alkyla-
tion of this intermediate is not described.9
2. Results and discussion

The synthesis of the oxazolo[3]benzoazepinone 4 was
performed as shown in Scheme 1 by starting from com-
mercially available o-phenylenediacetic acid 6. In the
first step, dicarboxylic acid 6 was transformed into
anhydride 7. Then, the chiral information was intro-
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Scheme 1. Reagents and conditions: (a) SOCl2 1.0 equiv, toluene, 110 �C, 18

4 h, 85%; (c) TMS-Cl 3.0 equiv, MeOH abs., 0 �C, 18 h, 83%; (d) triisoprop

LiBH4 4.0 equiv, THF abs., rt, 18 h, 94%; (f) Dess-Martin-Periodinane 1.15 e

CHCl3/H
+, rt, 5 h, 61% 4, 7% 14.
duced by the reaction of anhydride 7 with enantiomeri-
cally pure (R)-phenylglycinol to give amido acid 8.10 For
the synthesis of the oxazolo[3]benzoazepinone 4, the car-
boxylic acid had to be reduced to the oxidation level of
an aldehyde. Since the direct reduction of the ester 9
failed to give an aldehyde, a reduction/oxidation proce-
dure was performed. For this purpose, the primary alco-
hol of 9 was protected with triisopropylsilyl chloride11 to
afford silyl ether 10. Reduction of 10 with LiBH4 yielded
alcohol 11, which was oxidised by Dess-Martin-Period-
inane12 to provide the desired aldehyde 12. Next, the
alcohol protecting group was cleaved with MeOH/HCl
resulting in the simultaneous protection of the aldehyde
moiety to give dimethyl acetal 13. Finally amido acetal
13 was cyclised with a catalytic amount of HCl to obtain
oxazolo[3]benzoazepinone 4 in 61% yield. A small
amount (7%) of side product 14, which was the main
product after heating of 13 in toluene, could be isolated
by flash chromatography. A further product could not
be isolated. Even careful HPLC analysis and NMR
experiments did not reveal the diastereomer of 4.

The relative configuration of 4 was determined by the
nuclear Overhauser effect. Saturation of the proton at
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h, 86%; (b) (R)-phenylglycinol 1.0 equiv, Et3N 1.0 equiv, CH2Cl2, rt,

ylsilyl chloride 1.2 equiv, imidazole 2.5 equiv, DMF, rt, 18 h, 91%; (e)

quiv, CH2Cl2, rt, 30 min, 71%; (g) 1% methanolic HCl, rt, 3 h, 75%; (h)
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the 11a-position (5.06 ppm) resulted in intensifying of
the signals of the phenyl protons. An increase of the
signal at 5.40 ppm (3-H) was not observed, indicating
a trans-arrangement of these protons. Thus, the configu-
ration of the novel stereogenic centre at the 11a-position
is (S).13

In order to introduce alkyl substituents at the 6-posi-
tion, oxazolo[3]benzoazepinone 4 was deprotonated
with LDA (1.1 equiv) and subsequently alkylated with
benzyl bromide (1.0 equiv). The alkylation product 15
was isolated in 76% yield (Scheme 2).14 Careful HPLC
and LC/MS analysis of the crude alkylation product re-
vealed a diastereomeric ratio of 95.1:4.9. For further
transformations, 15 was purified by flash chromatogra-
phy to yield a product with 99.85% de.
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Scheme 2. Reagents and conditions: (a) benzyl bromide 1.0 equiv,

LDA 1.1 equiv, THF abs., N2, 0 �C, 4 h, 76%.
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Figure 3. ORTEP-plot of X-ray crystal structure analysis of 15.
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Scheme 3. Reagents and conditions: (a) AlCl3 0.92 equiv, LiAlH4 2.78 equiv,

MeOH, 80 �C, 2.5 h, 74%.
The relative configuration of alkylation product 15 was
determined by X-ray crystal structure analysis (see Fig.
3). As shown in Figure 3, the benzyl moiety and the
phenyl residue are trans configured. In several publica-
tions, highly diastereoselective alkylations of pyrrolidine,
piperidine and piperazine derivatives using the chiral
auxiliary phenylglycinol have already been described.15–17

The desired enantiomerically pure 1-benzyl tetrahydro-
3-benzoazepine 17 was obtained by reductive degrada-
tion of 15 with LiAlH4/AlCl3 and debenzylation with
ammonium formate Pd/C (Scheme 3).18 HPLC and
LC/MS analysis of 15 and 16 show that the LiAlH4

reduction proceeded without any epimerisation. Per-
forming the reductive degradation with diastereomeri-
cally pure 15 led to diastereomerically pure 16 and the
desired enantiomerically pure (R)-1-benzyl-3-benzoaze-
pine 17.
3. X-ray crystal structure analysis for 15

Formula C25H23NO2, M = 369.44, colourless crystal
0.45 · 0.20 · 0.15 mm, a = 8.925(1), b = 13.894(1),
c = 16.015(1) Å, V = 1985.9(3) Å3, qcalc = 1.236 g cm�3,
l = 6.13 cm�1, empirical absorption correction (0.770 6

T 6 0.914), Z = 4, orthorhombic, space group P212121

(No. 19), k = 1.54178 Å, T = 223 K, x and u scans,
O
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THF abs., N2, 0 �C, 1.5 h, 80%; (b) HCOONH4 10 equiv, Pd/C (10%),
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8999 reflections collected (±h, ±k, ±l), [(sinh)/
k] = 0.59 Å�1, 3242 independent (Rint = 0.042) and
2864 observed reflections [I P 2r(I)], 254 refined param-
eters, R = 0.040, wR2 = 0.106, max. residual electron
density 0.20 (�0.14) eÅ�3, Flack parameter 0.3(3),
hydrogens calculated and refined as riding atoms.

Data set was collected with a Nonius KappaCCD dif-
fractometer. Programs used: data collection COLLECT
(Nonius B. V., 1998), data reduction Denzo-SMN,19

absorption correction SORTAV,20,21 structure solution
SHELXS-97,22 structure refinement SHELXL-97
(Sheldrick, G. M. Universität Göttingen, 1997), graph-
ics SCHAKAL (Keller, E. Universität Freiburg, 1997).

Crystallographic data (excluding structure factors) for
the structure reported herein, have been deposited with
the Cambridge Crystallographic Data Centre as supple-
mentary publication CCDC-249401. Copies of the data
can be obtained free of charge on application to The
Director, CCDC, 12 Union Road, Cambridge CB2
1EZ, UK [fax: int. code +44 (0) 1223 336033, e-mail:
deposit@ccdc.cam.ac.uk].
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